How to Decide on the Right Wall Material for Your Cleanroom

How to Decide on the Right Wall Material for Your Cleanroom

If you’re working on a technical specification for your new cleanroom design, you’ve likely noticed different types of cleanroom wall materials in the market. Unless you have experience with all the different types of cleanrooms, you might not yet know which cleanroom envelope system is suitable for your project.

Well, we’re here to help you out as best we can. We know it can be tough to find the info you’re looking for when it comes to cleanroom components, so we put together this blog to help you figure out your options for cleanroom walls. First, what essential elements do you need for a successful cleanroom wall that upholds your application’s standards?

When it comes to cleanroom walls, you’re looking for two things: smooth, dust-free surfaces. But finding the perfect surface type for your operation is easier said than done. Here are some considerations to determine what wall material type is best for you:

 

FLEXIBILITY

One of the biggest concerns for any new cleanroom is deciding how flexible your cleanroom should be. If you plan on housing it in the same building for a decade or more, you can probably get by with cheaper wall options.

Drywall coated with epoxy paint was a popular way to create cleanroom walls. You would take your building’s existing walls and paint them with an epoxy coating rated for cleanrooms. But one of the main problems with painted drywall is that those will be the walls you’re stuck with now and forever. When it comes to stick-built cleanrooms, there’s minimal scope for rearranging or expanding the space you started with, and providing the required extraction levels is challenging.

If you think your cleanroom is likely to expand once operations get underway, then a modular cleanroom with moveable wall panels would be a much better option. The materials might cost a bit more upfront, but you’ll also want to consider what you’d be getting for that additional fee.

Modular cleanroom wall panels are typically manufactured out of scratch and damage-resistant materials. This is helpful because if something runs into one of your modular wall panels, you don’t have to worry about drywall particulate below an epoxy coating seeping out and contaminating your cleanroom. If a modular wall panel gets a scratch, there’s very little cause for concern, and in most cases, you can return to business as usual. Worst case scenario: if the damage is substantial, you can arrange for a replacement panel to be easily fit into your existing system in no time.

 

STANDARDS

SoftWall cleanroom walls are the most economical type of modular cleanroom wall construction. Clear and flexible panels are mounted onto a robust steel frame, enclosing the clean area. As the panels overlap, the walls remain an effective barrier to create an ISO class 7-8 cleanroom, but with a higher volume of air required to achieve a higher level of cleanliness, you may need a solid wall panel.

RigidWall cleanroom construction can withstand the high airflow required for ultra-clean environments such as ISO class 5-6 clean zones. But the bright and durable finish makes them an attractive option for ISO class 7-8 cleanrooms.

HardWall cleanroom panels create a flush finish to a cleanroom wall. They are perfect for high-performance cleanroom applications with a range of proprietary features, such as raceway trunking to supply services, flush glazing, doors, and wall and ceiling panels.

 

CLEANING AGENTS

Once you’ve decided on modular cleanroom walls, it’s time to consider the cleaning agents you’ll be using on those walls. Every cleanroom classification is different and requires different levels of cleaning and disinfection. Pharmaceutical cleanrooms, for example, must be disinfected regularly with very harsh chemicals to prevent microbial buildup. In this situation, you need a HardWall cleanroom wall finish that can hold up to those chemicals without warping, corroding, or melting. Walls made from stainless steel with a cleanroom-specific coating are typically suitable for applications that use super-strong cleaning materials.

On the other side of the coin, if you plan on cleaning your cleanroom regularly but don’t need to use the highest-grade disinfectants, RigidWall cleanrooms wall options like acrylic, static dissipative PVC, or polycarbonate wall panels are a more cost-effective choice. When using lower-grade cleaning materials, you need a wall panel that prevents bacteria and particulate from sticking to it. You won’t have to worry about harsh chemicals eating through coatings and materials, causing a lot of particulate buildup within your cleanroom.

 

DURABILITY

As mentioned before, durability can play a significant role in choosing cleanroom wall material. Depending on your application, you’ll need varying levels of material durability. Some materials, like lightweight vinyl modular wall panels, or epoxy-coated drywall, can easily scratch. When the protective coating is breached, the material underneath is exposed and can give off dangerous particulate that can interfere with your processes. Moreover, some wall materials not certified for cleanroom use could outgas or start to give off particulate as they age.

Cleanrooms with more intensive standards are typically best served by walls made primarily of aluminum structure. Aluminum is lightweight, durable, and, best of all, doesn’t give off particulate as it ages. That said, it is a more costly option. So if your cleanroom doesn’t need quite that level of cleanliness, you might choose a less expensive option.

 

COST

Perhaps the most significant consideration for your cleanroom wall material decision is that you have to stick to a specific budget. With cleanrooms, particulate control is the most critical factor, so it stands to reason that a large part of the investment goes into the airflow, the expensive filtration systems, and the energy you use to keep your cleanroom functioning correctly. Because of this, many cleanrooms don’t look as expensive as they are.

Your cleanroom walls can be one of the least costly aspects of your cleanroom as they are relatively low-tech. So, if you’re looking for an area of the project where you can save money, this could be it.

That said, a few companies want their cleanrooms to reflect the expense put into them, so they spend more on their walls. A high cosmetic finish can be achieved if you have extra room in the budget and want to build a cleanroom that looks like a high-tech, cutting-edge facility. But know that you don’t have to have the highest specification of walls to meet your cleanroom standards.

 

When designing a new cleanroom, deciding which cleanroom wall material will work best for your application and convey the image you’re looking for can be difficult. If you have more questions about choosing a suitable wall material for your cleanroom, call the experts at Angstrom! We’re here to help you, and we’d love to provide you with any cleanroom information you want to make the best, informed choice for your company. Call our office at 888-768-6900, or request a quote online today!

GET INSTANT ACCESS TO OUR CLEANROOM DESIGN GUIDE

cleanroom-design-guide

Building a battery dry room

Building a battery dry room

Many materials and processes used in battery production are susceptible to moisture damage. For that reason, humidity control is critical in a battery dry room. The experts at Angstrom Technology can create a stable low dewpoint production environment to meet your requirements. In this blog post, we explain how.

 

Battery dry room construction

Battery dry rooms require a constant supply of ultra-dry air to create and maintain low-humidity conditions for the R&D and production of solid-state and lithium-ion batteries.

We can develop an energy-efficient dry room to protect your critical process in any of the following applications. We do this by combining airtight envelope systems, dehumidification systems, and HVAC design.

Small-scale battery research

Pilot plants

Mega / Giga-factory

Single-zone facilities for testing the chemicals and processes during battery R&D.Multi-zoned facilities for scaling up production to manufacture at volume.Large-scale battery production facilities for high-volume battery production.

 

Battery dry room manufacturers

As battery dry room facility manufacturers, we deliver complete dry room systems. Working with specialist humidity control partners, we provide bespoke solutions that include industry-leading energy-efficient HVAC systems.

A typical clean room environment operates at 20.0°Cdb, 50% Relative Humidity — which is a dewpoint of 9.3°Cdp. Due to the materials’ sensitivity in the process, solid-state battery dry rooms can require control to minus 40.0°Cdp at the room’s exit point. A lower dewpoint of minus 50.0°Cdp is required for Lithium-ion battery dry rooms, and the next generation may have even tighter requirements. The battery chemistry may need the environment to reach minus 80.0°Cdp at the point of supply into critical areas, such as Electrolyte Fill.

Look at how we can custom-build your perfect battery dry room.

 

Footprint & zones

Establish a suitable layout for your process, featuring multiple zones, each with the optimum dew point temperature and ISO class.

 

Dehumidification systems

Single or multi-rotor low dewpoint AHU options to suit your budget, space, and specification needs.

 

Internal airflow distribution methods

Horizontal unidirectional airflow with a supply and return air plenum or a high-level distribution system with uni or non-unidirectional airflow.

 

Airflow modelling

Using Computational fluid dynamics (CFD) studies to verify HVAC design with equipment and furniture layouts.

 

Scalable HVAC designs

With specialist AHUs designed for deployment in battery facilities, airflows range from 2,000 m³h to 50,000 m³

 

Energy-efficient design

Airtight envelope systems and recirculated air manage energy efficiency.

 

Battery dry room design & build projects with Angstrom Technology

As Angstrom Technology are cleanroom specialists, our dry rooms can also achieve ISO classification. Not only that, but they can also meet any applicable international engineering and building standards and regulations.

We’ve developed proven envelope solutions and reliable cleanroom HVAC designs for many applications. The Angstrom Technology group pride ourselves on our in-house expertise and capability to deliver over 100 cleanrooms annually across America, the UK, and Europe.

Tell us about your new dry room project!

Whitepaper: Dry room design guide for lithium battery manufacturing

DOWNLOAD OUR HANDY GUIDE:

 

 

dry room design guide
Post-and-Panel vs. Seamless Cleanroom Wall Systems

Post-and-Panel vs. Seamless Cleanroom Wall Systems

The materials you use to build your cleanroom have a lasting impact on its cleanliness, performance, durability, and appearance. Arguably the most important of these materials is the cleanroom wall system you choose. 

Let’s take a look at two of the most common types of cleanroom wall systems: post-and-panel and seamless. 

Post-and-Panel vs. Seamless Wall Systems: What’s the Difference?

First, some definitions. Learn more about what post-and-panel and seamless wall systems are, and how they differ below. 

What Is a Post-and-Panel Cleanroom Wall System?

A post-and-panel cleanroom wall system utilizes a series of non-progressive posts and panels that are joined together to create a modular enclosure. The posts and panels are “stitched” together with a corrugated roof deck that keeps them in place. 

The end result? A modular enclosure that’s self-supporting, reconfigurable, and isolated from its surrounding environment. It stands alone and is separate from the existing building structure. 

What Is a Seamless Cleanroom Wall System?

A seamless cleanroom wall system utilizes studless, flush wall or liner panels to create a modular enclosure. These wall panels can be either progressive or non-progressive but are tightly sealed so that no seams are exposed. They also have coving (a curved covering that connects a wall to a ceiling) on both horizontal and vertical intersections. 

A seamless cleanroom wall system can be tied into steel stud walls and/or the existing building structure that surrounds it. It also typically features a flush, walkable ceiling. Its seamless design allows for durable performance and sleek aesthetic appeal for the most stringent applications. 

Pros & Cons of Post-and-Panel Cleanroom Wall Systems

Now let’s take a look at some of the advantages and disadvantages of these cleanroom wall systems, specifically highlighting distinguishing factors between each type. We’ll start with post-and-panel. 

The main advantages of post-and-panel cleanroom wall systems are: 

  • They can be reconfigured easily. Due to their non-progressive nature, post-and-panel wall systems are the easiest type to reconfigure. The-two piece stud post allows removal and replacement of a wall panel without disturbing adjacent panels. They also accomodate quick and easy vertical installation of electrical, data, and communication lines in the raceways, which are accessible from the removable cover plate. If your facility is expecting growth or changes in the future, this is an important benefit to consider. 
  • They’re self-supporting. Post-and-panel wall systems can stand alone. The structural-grade, extruded aluminum acts as a structural column on spaces with long clear spans or load bearing roofs. The stud system will accommodate steel tube inserts for additional load bearing capability. They don’t need to be integrated into an existing building structure, giving you a bit more versatility with placement and layout. 

The main disadvantages of post-and-panel cleanroom wall systems are: 

  • They’re harder to clean. Because they’re not fully seamless (the panels will fit within studs creating an ⅛” protrussion or less) and have no coving integrated into their system, post-and-panel wall systems can be more difficult to clean. There are more seams and crevices where particles can accumulate. 
  • They’re not FM-approved. Post-and-panel wall systems are Class A non-combustible, but they’re not FM-approved. This may be a deal breaker for certain applications, depending on industry-specific requirements. 

Pros & Cons of Seamless Cleanroom Wall Systems

Now for some advantages and disadvantages of seamless cleanroom wall systems — which are basically the opposite of what we mentioned about their post-and-panel counterparts. 

To start, the main advantages of seamless cleanroom wall systems are: 

  • They’re easy to clean. Seamless wall systems have tight, chemically cold-welded uPVC seams and coves so there are no crevices for contaminants to build up in or air leakage. This makes them much easier to clean, wash down, and fumigate. For higher ISO classifications with stringent cleaning requirements, this is the best option.
  • They feature a floating flush ceiling. Their floating flush ceiling offers the same fine line seams and finishes as the modular wall system. The flush ceiling platform utilizes 5’ x 10’ ceiling panels and 5’ x 10’ hanger spacing, allowing the installation of FFUs and lights without changing the ceiling panel orientation. Interior wall panels are attached to the bottom surface of the ceiling panels and wall/ceiling covings can be run at any location making it integral to the cleanroom system. The walkable ceiling is capable of supporting a wide variety of mechanical systems and accommodating components and small equipment.
  • They’re FM-approved. Seamless wall systems are both Class A non-combustible and FM-approved, meaning they offer the considerable level of fire resistance that some cleanroom applications require. 

The main disadvantages of seamless cleanroom wall panels are:

  • They’re not as easy to reconfigure. While it’s definitely not an impossible task, reconfiguring a seamless cleanroom is a bit more difficult. This is especially true if it’s built with progressive wall panels where replacement is done through the use of rotating splines.
  • They can’t stand alone. Seamless cleanroom wall systems aren’t self-supporting. They must tie into the existing building structure, or you’ll have to build a steel superstructure for support.
  • They’re a bit more expensive. Since the system isn’t structurally sound on its own and must be supported by a steel superstructure or existing building, seamless cleanroom wall systems are generally the more costly option.  

What Type of Wall System Is Best for My Cleanroom?

Both post-and-panel and seamless cleanroom wall systems are great options that can meet varying specifications you need them to, so there’s not really a “wrong” answer to this question. A better way of looking at it is there might be one option that’s better for you than the other. That can vary for you based on a few factors, including:

Our recommendation is that before deciding anything, you should connect with a cleanroom specialist. They’ll be able to listen to your unique needs and recommend a solution that will work best for you. 

Start Your Cleanroom Design & Build Project with Angstrom Technology

Thinking about installing a new cleanroom in your facility? We can help! At Angstrom Technology, our cleanroom specialists have extensive experience designing, building, and installing cleanrooms with high-quality materials. 

From deciding which type of cleanroom wall system is best for your application to ensuring you have enough air filters and handling units to maintain a controlled environment, we’ll help you work through the details of your project. Then we’ll make your vision come to life! 

To get started working with us, give us a call at (888) 768-6900 or contact us online.

cleanroom-classification-quiz-cta
Dedicated vs. Integrated Cleanroom HVAC Design

Dedicated vs. Integrated Cleanroom HVAC Design

Environmental control is the staple of effective cleanroom design and performance. In order to ensure safe and controlled operations can take place, airborne particles of a certain size must be caught and removed from the cleanroom environment. 

However, there’s more to the equation than just air filtration. Regulating temperature and humidity within your cleanroom is also an important factor in maintaining a high level of environmental control and to protect customer products. A well-equipped and strategically configured HVAC system can get you there.

What Does an HVAC System Do?

HVAC systems are air handling units engineered for precise control over temperature and humidity within an enclosed space. They complement filtration systems like HEPA and ULPA filters which sit in your cleanroom’s ceiling grid. 

When it comes to choosing an HVAC system for your cleanroom, you have two options: dedicated or integrated. Below, we’ll discuss what each of these options means so you can make an informed decision about what will help your cleanroom reach peak performance. 

Dedicated vs. Integrated Cleanroom HVAC Design: What’s the Difference?

So what are dedicated and integrated HVAC systems? Their definitions have to do with how each one is designed and implemented within the cleanroom environment, and possibly within the larger facility as a whole. 

  • Dedicated cleanroom HVAC design is when an HVAC system is designed specifically for the cleanroom and utilizes its own system. It operates independently from the rest of your facility’s existing HVAC system.
  • Integrated cleanroom HVAC design is when the facility’s existing HVAC system is used to service, tie into, and maintain the cleanroom. It operates in utilizing the larger facility’s system.

After reading and understanding those descriptions, you may get a sense of the advantages and disadvantages related to each design choice. In the following sections, we break that down a little more clearly.  

Pros & Cons of Dedicated Cleanroom HVAC System

Dedicated cleanroom HVAC system is a smart choice for many facilities. In fact, it’s usually the only configuration that can meet a cleanroom’s specifications. In terms of design, air changes per hour, heat loads, air filtration, and environmental control over temperature and humidity, this is the choice that can meet the most stringent HVAC requirements

A dedicated cleanroom HVAC system can also help a facility balance the load put on their various operational systems. Since it’s independent of the rest of the building’s HVAC system, it carries its own load and doesn’t take anything away or starve other external spaces. This is a big deal when you think about how much energy and air cleanroom HVAC systems circulate on a daily basis. 

A few disadvantages here? 

Dedicated cleanroom HVAC systems can cost more and require a more involved process upfront. Since an entirely new system is being installed, site details, existing facility drawings,  design, coordination with other engineers, and installation time is usually necessary. 

But after installing an HVAC system that’s reliable, meets the required specifications, and performs well, most facility managers find that the upfront cost was well worth it — making the dedicated HVAC system a more cost-effective choice in the long run. 

Pros & Cons of Integrated Cleanroom HVAC System

When you look at an integrated cleanroom HVAC system, the advantages and disadvantages are basically the opposite of those described above. 

The biggest benefit of integrated cleanroom HVAC system is that it requires less design and installation time because you are tying into the existing facility’s system. Because of this, it may cost less upfront. However, that lower upfront cost often comes with a lower-performing system or cleanroom. 

Since integrated cleanroom HVAC systems are incorporated into buildings’ existing HVAC systems, they use the same supply air as the rest of the building, which is typically not designed for cleanroom applications. 

For cleanrooms that need a high level of environmental control, need to turn the air over a significant amount of times per hour, and need to protect the safety of the product, this can be detrimental. Air from other areas of the building is designed for creature comfort of their employees, so it’s controlled differently than a cleanroom. Merging the two operations together creates unpleasant environments for one of the two parties. 

Which Type of Cleanroom HVAC System Is Right for My Facility?

No matter your cleanroom’s size or application, a dedicated cleanroom HVAC system is the most effective choice. It’s more capable of meeting requirements related to filtration, temperature, humidity, and more — ultimately providing you will a controlled, high-functioning, cost-effective space. 

If you’re still unsure about how this type of cleanroom HVAC design could fit into your facility, get in touch with a trusted cleanroom manufacturer or technician. They’ll be able to listen to your concerns and provide you with recommendations that are customized to fit your needs. 

Ready to Start the Cleanroom Design Process? Contact our Experts

Your cleanroom’s HVAC system is essential to the safety and efficiency of your operations. If you’re looking for a cleanroom manufacturer that can deliver a well-designed, high-performance solution, contact Angstrom Technology for more information or request a quote today. 

Our cleanroom design and engineering specialists have experience working with customers in all kinds of industries, achieving great results time and time again. We’d love to work with you as well!

cleanroom-classification-quiz-cta
4 Types of Cell & Gene Therapy Cleanroom Workstations

4 Types of Cell & Gene Therapy Cleanroom Workstations

For some industries, simple stainless steel tables make for adequate cleanroom workstations. Cell and gene therapy isn’t one of them. Due to the sensitivity of their materials and processes, these cleanrooms call for a high level of environmental and contaminant control that stainless steel tables can’t always meet. 

Cell and gene therapy cleanrooms require special, more controlled types of cleanroom workstations. We’ll discuss a few of them below. 

4 Types of Cell & Gene Therapy Cleanroom Workstations

Designing a cell and gene therapy cleanroom? You’ll want to understand what these four cleanroom workstations are, what they do, and why they’re necessary for your processes. 

1. Laminar Flow Hoods 

Laminar flow hoods are enclosed devices designed to carefully guide HEPA- or ULPA-filtered air so that it sweeps particles in a uniform direction and at a uniform speed across the work surface. The direction is from the laminar flow hood’s most treated area (the filter) to its exit area. This ensures that all sensitive materials placed on the workstation are upstream and not affected by contaminant particles. 

There are two main types of laminar flow hoods: horizontal and vertical. Both generate a sweeping action and can meet ISO Class 5 requirements, but there are a few key differences in how they perform, and therefore which applications they’re best used for.  

  • Horizontal laminar flow hoods direct air horizontally — pulling air from behind the hood, then pushing it through a HEPA or ULPA filter to move forward across the workstation before exiting. This allows for low turbulence, easy positioning of materials, and reduced contamination from hands and gloves (since the operator is downstream). 
  • Vertical laminar flow hoods direct air vertically — pulling air from above the hood, then pushing it through a HEPA or ULPA filter to move downward onto the workstation until it disperses and exits the enclosure. This is great for applications requiring enhanced operator safety or accommodations for tall and large materials. However, vertical air hitting a perpendicular surface could cause apotential increase in turbulence, and possibly contamination. 

2. Biosafety Cabinets

Biosafety cabinets are similar to laminar flow hoods but have additional layers of protection for the operator and surrounding environment. They should be used when materials or processes present an increased safety risk to the people or space outside of the cell and gene therapy workstation. 

Biosafety cabinets use negative pressure to keep operators and environments safe. Negative pressure occurs when the air pressure in the biosafety cabinet is lower than the air pressure in the cleanroom. It’s achieved by filtering air out of the cabinet. The HEPA or ULPA filter captures contaminant particles before the air is exhausted back into the cleanroom or externally vented to the outside. 

There are three biosafety cabinet classes: 

  • Class I biosafety cabinets protect the cleanroom operator and environment, but not the materials. They have open access to the work zone. 
  • Class II biosafety cabinets protect the cleanroom operator, environment, and materials. They have open access to the work zone. 
  • Class III biosafety cabinets protect the cleanroom operator, environment, and materials to the highest degree. They’re necessary when dealing with biosafety level 4 agents or any other highly hazardous sample. They are fully enclosed cabinets with sealed glove assemblies to avoid operator contact with hazardous materials. 

3. Isolators

Isolators are another type of clean air device used to completely separate a material from cleanroom operators and the surrounding environment. They’re required when a very high level of protection is needed from external conditions and contaminants. They can meet ISO Class 5 requirements. 

In cell and gene therapy cleanrooms, isolators are typically used for aseptic filling processes. Cleanroom operators perform tasks through sealed glove assemblies that ensure no materials are harmed. 

There are two main types of isolators: closed and open. 

  • Closed isolators eliminate external contamination by transferring materials via aseptic connection to auxiliary equipment. They’re sealed throughout all operations and have no openings. 
  • Open isolators have one or more openings, so that materials can be inserted or taken out at any time. The openings are designed to stop contaminant particles from entering. 

4. Hypoxic Workstations

Hypoxic workstations are enclosures that allow for strict control over oxygen, carbon dioxide, temperature, and humidity. They’re focused on both contamination and environmental control to a high degree. 

The most important feature of hypoxic workstations is that they can control oxygen in 0.1% increments, all the way from 0.1-20%. They can also meet up to ISO Class 3 requirements and are outfitted with glove assemblies to ensure particle control. 

This extreme control over environmental factors can be useful in many cleanroom industries but is especially beneficial in biological applications like cell and gene therapy. In order to culture cells safely, effectively, and repeatedly, optimal environmental conditions are necessary. 

Start Your Cell & Gene Therapy Cleanroom Project With Angstrom Technology

If you’re planning to install a cell and gene therapy cleanroom of your own, our team can develop a design that will accommodate whatever type of workstation it requires. As an industry leader in cleanroom solutions, we have the skills, knowledge, and experience it takes to bring your cleanroom to life, operating safely and efficiently for years to come. To get started, give us a call at 616-866-2400 or request a quote online.

cleanroom-classification-quiz-cta
How Does Cleanroom Size Affect Process Flow?

How Does Cleanroom Size Affect Process Flow?

Designing and installing a large cleanroom is a lot different than designing and installing a small one — but how exactly? Let’s take a look at some cleanroom design considerations you should make at the start of a large project so that you end up with a finished space that optimizes process flow. 

7 Considerations for Designing Large Cleanrooms

Designing a large cleanroom is no small feat, as there are many factors to consider. It’s important to carefully plan everything out during the design process, so that building and installation go as smoothly as possible, and so you don’t waste any time or money fixing mistakes. 

With the right knowledge, tools, and support, designing a large, complex cleanroom is more than possible. Here are seven key considerations you’ll want to make before starting. 

1. Project Timeline

Simply put, if you have a large cleanroom project, every part of the design, build, and installation process will take more time. While it’s difficult to estimate timelines without knowing the specific size and design complexity of your cleanroom, you can expect them to be similar to these ranges for larger cleanroom projects: 

  • Design: 1-6 months
  • Fabrication/Production: 4-12 weeks
  • Installation: 2-16 weeks

2. Cleanroom Resources & Materials

More complex cleanroom projects generally call for more resources and materials, which could include any of the following: 

  • Structural components
  • Process piping
  • Machines/equipment
  • Furniture
  • Filters
  • Casework
  • Control systems (access doors, environmental, generators, UPS systems, etc.)
  • And more!

All of these materials and equipment require the introduction of various vendors, suppliers, and trade partners, which we’ll touch on a bit more below. But this brings up the fact that more resources doesn’t just mean equipment and materials — it also means bringing in more labor resources, or workers to coordinate with. 

3. Cleanroom Cost

Additional time and resources often come with additional costs. Of course, cleanroom cost is dependent on more factors than just size. But if all those other factors remained the same, a bigger cleanroom would likely cost more than a smaller one. This is an important consideration to take into account during the cleanroom design process, so you can be sure to stick to any budgetary constraints you have. 

4. Project Trade Partners

As we briefly mentioned above, bigger, more complex cleanroom projects often require you to work alongside more vendors, suppliers, and trade partners. People like electricians, facilities managers, contractors, HVAC specialists, and plumbers can all be pulled in to manage their parts of the process. 

Working with this many trade partners requires constant, effective communication and collaboration between all parties. Otherwise, there can be detrimental setbacks or holes in design — extending your project timeline further than you originally hoped. 

If you’re worried about managing all these different professional relationships, make sure you hire a reputable, experienced cleanroom manufacturer. They’re likely to have existing relationships with high-quality trade partners, which can help ensure a smooth design, build, and installation process. 

5. Type of Cleanroom

There are three types of cleanrooms: HardWall, SoftWall, and RigidWall. While the type you need heavily depends on your cleanroom requirements and ISO classification, HardWall cleanrooms do typically lend themselves to larger, more complex projects. The robust wall system allows for greater versatility and design customization. And, if you wish to expand your cleanroom even more in the future, HardWall cleanrooms are set up best to make these accommodations. 

6. Cleanroom Filtration

The amount of filtration your cleanroom needs is mostly dependent on its application and ISO classification — not so much its size. However, it’s still important to maintain the required ceiling coverage and furniture placement for optimal air movement. 

To be more specific, you need to put careful thought into where your filters will be placed in the cleanroom ceiling grid, and what types of work surfaces, furniture, and equipment will be directly below them. That way, when you have unidirectional airflow, the air can move straight down and suffer minimal disturbance — helping to maintain a uniform pattern for peak cleanliness and control. 

7. Cleanroom Airflow & Pressure

Large cleanrooms frequently include multiple different cleanroom rooms or zones. In each of these zones, different operations can be performed, which most often require different levels of cleanliness and control. 

That said, most large cleanroom projects require special attention to cascading pressure patterns. This is when the most stringent cleanroom zone has the highest level of pressure, and the least stringent cleanroom zone has the lowest level of pressure — all of which work to ensure the flow of contamination is from most clean to least clean. 

Have a Large Cleanroom Project? We Can Help!

Big cleanrooms come with big responsibilities. If you need help designing and installing one that meets your facility’s unique needs while complying with industry standards, contact us at Angstrom Technology. Our experts have the skills and experience needed to tackle any cleanroom project — no matter what design challenges it may present.

cleanroom-classification-quiz-cta