For some industries, simple stainless steel tables make for adequate cleanroom workstations. Cell and gene therapy isn’t one of them. Due to the sensitivity of their materials and processes, these cleanrooms call for a high level of environmental and contaminant control that stainless steel tables can’t always meet. 

Cell and gene therapy cleanrooms require special, more controlled types of cleanroom workstations. We’ll discuss a few of them below. 

4 Types of Cell & Gene Therapy Cleanroom Workstations

Designing a cell and gene therapy cleanroom? You’ll want to understand what these four cleanroom workstations are, what they do, and why they’re necessary for your processes. 

1. Laminar Flow Hoods 

Laminar flow hoods are enclosed devices designed to carefully guide HEPA- or ULPA-filtered air so that it sweeps particles in a uniform direction and at a uniform speed across the work surface. The direction is from the laminar flow hood’s most treated area (the filter) to its exit area. This ensures that all sensitive materials placed on the workstation are upstream and not affected by contaminant particles. 

There are two main types of laminar flow hoods: horizontal and vertical. Both generate a sweeping action and can meet ISO Class 5 requirements, but there are a few key differences in how they perform, and therefore which applications they’re best used for.  

  • Horizontal laminar flow hoods direct air horizontally — pulling air from behind the hood, then pushing it through a HEPA or ULPA filter to move forward across the workstation before exiting. This allows for low turbulence, easy positioning of materials, and reduced contamination from hands and gloves (since the operator is downstream). 
  • Vertical laminar flow hoods direct air vertically — pulling air from above the hood, then pushing it through a HEPA or ULPA filter to move downward onto the workstation until it disperses and exits the enclosure. This is great for applications requiring enhanced operator safety or accommodations for tall and large materials. However, vertical air hitting a perpendicular surface could cause apotential increase in turbulence, and possibly contamination. 

2. Biosafety Cabinets

Biosafety cabinets are similar to laminar flow hoods but have additional layers of protection for the operator and surrounding environment. They should be used when materials or processes present an increased safety risk to the people or space outside of the cell and gene therapy workstation. 

Biosafety cabinets use negative pressure to keep operators and environments safe. Negative pressure occurs when the air pressure in the biosafety cabinet is lower than the air pressure in the cleanroom. It’s achieved by filtering air out of the cabinet. The HEPA or ULPA filter captures contaminant particles before the air is exhausted back into the cleanroom or externally vented to the outside. 

There are three biosafety cabinet classes: 

  • Class I biosafety cabinets protect the cleanroom operator and environment, but not the materials. They have open access to the work zone. 
  • Class II biosafety cabinets protect the cleanroom operator, environment, and materials. They have open access to the work zone. 
  • Class III biosafety cabinets protect the cleanroom operator, environment, and materials to the highest degree. They’re necessary when dealing with biosafety level 4 agents or any other highly hazardous sample. They are fully enclosed cabinets with sealed glove assemblies to avoid operator contact with hazardous materials. 

3. Isolators

Isolators are another type of clean air device used to completely separate a material from cleanroom operators and the surrounding environment. They’re required when a very high level of protection is needed from external conditions and contaminants. They can meet ISO Class 5 requirements. 

In cell and gene therapy cleanrooms, isolators are typically used for aseptic filling processes. Cleanroom operators perform tasks through sealed glove assemblies that ensure no materials are harmed. 

There are two main types of isolators: closed and open. 

  • Closed isolators eliminate external contamination by transferring materials via aseptic connection to auxiliary equipment. They’re sealed throughout all operations and have no openings. 
  • Open isolators have one or more openings, so that materials can be inserted or taken out at any time. The openings are designed to stop contaminant particles from entering. 

4. Hypoxic Workstations

Hypoxic workstations are enclosures that allow for strict control over oxygen, carbon dioxide, temperature, and humidity. They’re focused on both contamination and environmental control to a high degree. 

The most important feature of hypoxic workstations is that they can control oxygen in 0.1% increments, all the way from 0.1-20%. They can also meet up to ISO Class 3 requirements and are outfitted with glove assemblies to ensure particle control. 

This extreme control over environmental factors can be useful in many cleanroom industries but is especially beneficial in biological applications like cell and gene therapy. In order to culture cells safely, effectively, and repeatedly, optimal environmental conditions are necessary. 

Start Your Cell & Gene Therapy Cleanroom Project With Angstrom Technology

If you’re planning to install a cell and gene therapy cleanroom of your own, our team can develop a design that will accommodate whatever type of workstation it requires. As an industry leader in cleanroom solutions, we have the skills, knowledge, and experience it takes to bring your cleanroom to life, operating safely and efficiently for years to come. To get started, give us a call at 616-866-2400 or request a quote online.

cleanroom-classification-quiz-cta